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Abstract
A variational method for periodic orbits is not easy to apply to a Hamiltonian
system, when the symplectic form is not exact. However, if the Hamiltonian
system in question is a reduced one from a Hamiltonian system on an exact
symplectic manifold, the variational method applies to the latter system in order
to find periodic orbits of the reduced system. This paper studies variational
methods for periodic orbits in the systems reduced by the Marsden–Weinstein
and the orbit reduction procedures. Periodic orbits of the reduced systems are
characterized as critical points of action functionals for loops in the original
phase space together with Lagrange multipliers.

PACS numbers: 45.10.Db, 45.20.Jj

1. Introduction

In classical mechanics, the variational principle provides a method for obtaining the Hamilton
equations. In particular, the variational method is applied to the action functional on the
loop space to find periodic orbits as critical points of the functional. Let P be a smooth
manifold, and T ∗P its cotangent bundle equipped with the Liouville one-form θ together with
the canonical symplectic structure ω = −dθ . We define the action functional for one-periodic
loops γ : S1 = R/Z → T ∗P to be

AH (γ ) =
∫

S1
γ ∗θ −

∫ 1

0
H(t, γ (t)) dt, (1.1)

where H is a time-periodic Hamiltonian function. Then critical points of this functional give
one-periodic orbits of the Hamilton equations

q̇ = ∂H

∂p
(t, q, p), ṗ = −∂H

∂q
(t, q, p),

which are written in the canonical coordinates (q, p) of the cotangent bundle. This method
also works well if the phase spaces are manifolds endowed with exact symplectic forms.
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On the other hand, symmetry of Hamiltonian systems is of great interest. In particular,
there are two major procedures to reduce Hamiltonian systems with the symmetry; one is
the Marsden–Weinstein reduction, and the other the orbit reduction. By means of symmetry,
the system can be reduced to that on the reduced phase space, but the variational method for
periodic orbits of the reduced system cannot be written down for loops in the reduced space.
This is because the reduced symplectic form is not always an exact form, and we cannot define
the action functional on the loop space of the reduced phase space like (1.1).

Some approaches to variational methods [CM87, CIM87, IO96] have been attempted for
reduced dynamical systems. In the case of exact symplectic manifolds, Cendra and Marsden
[CM87] have considered the action functional on the space of paths with fixed end points in
the original phase space. They have shown that the functional induces one on the space of
paths with fixed end points in the reduced phase space, and that critical points of the induced
functional are paths which are subject to the reduced equation. Papers [CM87, CIM87]
have also studied variational methods for reduced Lagrangian systems in terms of Clebsch
variables and Lin constraints. Ibort and Ontalba [IO96] have considered the action functional
AH restricted to the free loop space of a level set of the momentum map, and shown that
critical points of the restricted functional projects to periodic orbits of the reduced system.

This paper develops the idea of [IO96] to formulate variational methods for the reduced
systems by both of the Marsden–Weinstein and orbit reductions. However, instead of the
restriction of the action functional to a level set of the momentum map, the action functional
is dealt with on the free loop space of the original phase space along with time-dependent
Lagrange multipliers. Throughout this paper, the unreduced symplectic manifolds are assumed
to be exact.

This paper is organized as follows: in section 2, a brief review is made of momentum
maps, Marsden–Weinstein and orbit reductions, and relative periodic orbits of the Hamiltonian
system. Further, a variational method is given for relative periodic orbits. In sections 3 and 4,
variational methods are formulated for periodic orbits of the systems reduced by the Marsden–
Weinstein and by the orbit reductions, respectively. Both methods are shown to yield the same
result.

2. Symplectic reductions

We make a brief review of momentum maps, the Marsden–Weinstein reduction and the orbit
reduction. See [OR04] for the detail of the reduction theory. We also formulate a variational
method for finding relative periodic orbits of the Hamilton equation in the tail of this section.

Let (M,�) be an exact symplectic manifold, where the symplectic form � on M is an
exact two-form. We assume that a connected Lie group G properly and symplectically acts on
M from the left,

� : G × M −→ M; (g, x) �−→ �g(x) = gx.

In addition, we impose the condition that there is a one-form � which satisfies � = −d� and
is invariant under the G-action; g∗� = �∗

g� = � for any g ∈ G. In this case, the action of
G on M admits a momentum map µ : M → g∗ = Lie(G)∗ defined through

(µ(x), ξ) = �x(ξM), x ∈ M, ξ ∈ g := Lie(G), (2.1)

where (•, •) is the natural paring between g∗ and g, and ξM is the fundamental vector field
on M induced by ξ ∈ g. Further, the function µ : M → g∗ is G-equivariant, and satisfies
(dµ(X), ξ) = �(ξM,X) for an arbitrary vector field X on M and ξ ∈ g. This implies that ξM

is a Hamiltonian vector field associated with the function �(ξM) : M → R. For this reason,
the G-action admitting a G-equivariant momentum map is said to be Hamiltonian.
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To fix the sign convention, we summarize here the Hamiltonian vector fields, coadjoint
action and G-equivariance.

(1) The Hamiltonian vector field XH associated with a smooth function H ∈ C∞(M) is
uniquely determined through

iXH
� = dH, (2.2)

where iXH
� denotes the interior product of XH and �.

(2) The coadjoint action of G on g∗ is defined through

(Ad∗
gλ, ξ) = (λ, Adg−1ξ)

for any λ ∈ g∗, ξ ∈ g and g ∈ G. This means that Ad∗
g is the dual not to Adg but to Adg−1 .

Thus, ad∗ is a derived representation of the Ad∗-action of G; ad∗
ξ = d

dt

∣∣
t=0

Ad∗
exp(tξ).

(3) The G-equivariance of the momentum map µ : M → g∗ is expressed as

µ(gx) = Ad∗
gµ(x), g ∈ G, x ∈ M.

Indeed, the momentum map µ defined by (2.1) satisfies

(µ(gx), ξ) = �gx(ξM) = (
∗
g−1�x)(ξM) = �x((Adg−1ξ)M) = (µ(x), Adg−1ξ)

for any g ∈ G, x ∈ M and ξ ∈ g.

We proceed to a review of reduction procedure. Let λ ∈ g∗ be a regular value of the
momentum map µ. Denote by Gλ the isotropy subgroup of G at λ by the Ad∗-action on g∗. If
Gλ freely acts on the regular level set µ−1(λ) ⊂ M , then the quotient space

Mλ := µ−1(λ)/Gλ

becomes a smooth manifold, and is endowed with a symplectic form �λ determined through

π∗
λ�λ = �|µ−1(λ), (2.3)

where πλ : µ−1(λ) → Mλ is the natural projection. We note here that such a symplectic
structure �λ is unique. In particular, we write the reduced phase space as M//G = (M0,�0)

when λ = 0. The procedure for the construction of the symplectic manifold (Mλ,�λ) is
called the Marsden–Weinstein reduction [MW74]. Suppose a time-dependent Hamiltonian
H ∈ C∞(S1 × M) of period one in t, which satisfies

H(t, gx) = H(t, x) for (t, x) ∈ S1 × M and g ∈ G,

where S1 denotes R/Z throughout this paper otherwise mentioned. Then there is a smooth
function Hλ ∈ C∞(S1 × Mλ) such that π∗

λHλ
t = Ht |µ−1(λ), where Ht and Hλ

t denote
the functions H(t, •) and Hλ(t, •), respectively. Thus, the original Hamiltonian system
(M,�,H) with the Hamilton equation

ẋ = XHt
(x) (2.4)

is reduced to the Hamiltonian system (Mλ,�λ,H
λ) with the reduced Hamilton equation

ẏ = XHλ
t
(y). (2.5)

We call this reduced system the Marsden–Weinstein reduced system.
In comparison with the Marsden–Weinstein reduction, the orbit reduction [KKS78] runs

as follows: let O be a coadjoint orbit in g∗ through a regular value λ of µ. Suppose that the
action of G on µ−1(O) is free. This condition is equivalent to that Gλ freely acts on µ−1(λ).
Since µ−1(O) is a smooth manifold and admits a free action of G, the quotient space

MO := µ−1(O)/G
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has a smooth manifold structure. A unique symplectic form �O on MO is defined through

π∗
O�O = �|µ−1(O) − (µ|µ−1(O))

∗ωO, (2.6)

where πO : µ−1(O) → MO is the canonical projection, and ωO is the Kirillov–Kostant–
Souriau (KKS) form on the coadjoint orbit O defined to be

ωO(ad∗
ξ λ, ad∗

ηλ) := (λ, [ξ, η]), λ ∈ O, ξ, η ∈ g.

The reduced space (MO,�O) is symplectically diffeomorphic to (Mλ,�λ). Indeed, the
inclusion µ−1(λ) ↪→ µ−1(O) induces a symplectic diffeomorphism from Mλ = µ−1(λ)/Gλ

to MO = µ−1(O)/G. See [OR04] for the proof. When Ht is invariant under the G-action at
each t, it projects to a smooth function HO

t ∈ C∞(MO) through πO, that is, π∗
OHO

t = Ht |µ−1(O).
Then the original Hamiltonian system (M,�,H) reduces to the system (MO,�O,HO) with
the Hamilton equation

ż = XHO
t
(z). (2.7)

The system (MO,�O,HO) is called the orbit reduced system.
Note here that the Hamiltonian vector field XHt

is pushed forward to XHO
t

accordingly,

(πO)∗XHt
= XHO

t
. (2.8)

In fact, by using (2.2) and (2.6) along with the definition of HO
t , we obtain

�O((πO)∗XHt
− XHO

t
, (πO)∗Y ) + µ∗ωO(XHt

, Y ) = 0,

for any vector field Y on M. If Y is a fundamental vector field generated by an element of
g, (πO)∗Y vanishes, so that the above equation results in ωO(µ∗XHt

, µ∗Y ) = 0. Since µ∗Y is
viewed as arbitrary on O, one has µ∗XHt

= 0. This implies in turn that (πO)∗XHt
= XHO

t
, as

πO is surjective.

Example 2.1. A typical example of the reduction is taken for the case where M is a cotangent
bundle. When G smoothly acts on a manifold P, the action is naturally lifted to the cotangent
bundle T ∗P , on which the Liouville one-form θ is given by

θα(X) := α(p∗X), α ∈ T ∗P,X ∈ Tα(T ∗P),

where p is the projection from T ∗P to P. The lifted action of G preserves the Liouville one-
form θ , so that the action of G on T ∗P is symplectic with respect to the standard symplectic
structure ω = −dθ .

If G freely acts on P, then P is made into a principal G-bundle, P → P/G =: B. In
this case, the symplectic quotient M//G = T ∗P//G is symplectically diffeomorphic to T ∗B.
Furthermore, T ∗P/G is diffeomorphic to the Whitney sum bundle of T ∗B and the associated
coadjoint bundle g∗

P = P ×Ad∗ g∗, and has symplectic leaves MO ∼= T ∗B ×B OP , where
OP = P ×Ad∗ O. See [OR04, MP00] and papers therein for the detail of the cotangent bundle
reduction. In particular, if P = G, then the orbit reduced space MO is identified with the
coadjoint orbit O equipped with the KKS form ωO, as T ∗B consists of a single point.

In what follows, we work with a time-periodic Hamiltonian system, i.e., Ht+1 = Ht .
Because of Ht+1 = Ht , the flow φt of XHt

satisfies

φt+1 = φt ◦ φ1 = φ1 ◦ φt .

If Ht is invariant under the G-action for each t ∈ S1 = R/Z, then the quantity µ(x(t)) is
preserved along a solution x(t) of (2.4). In fact, we have, for any ξ ∈ g,

d

dt
(µ(x(t)), ξ) = �(ξM, ẋ) = −dHt(ξM) = 0.

The last equality is due to the G-invariance of Ht .

4



J. Phys. A: Math. Theor. 41 (2008) 275212 Y Yabu

We are now interested in periodic orbits of the Hamilton equation (2.4). If x(t) is a
periodic orbit of (2.4), then x(t) projects to periodic orbits of the reduced Hamilton equations
(2.5) and (2.7). However, for a periodic orbit y(t) of (2.7), its lift on M is not expected to be a
periodic orbit of (2.4), in general. The lifts are relative periodic orbits of (2.4). The definition
of relative periodic orbits is as follows.

Definition 2.2. Let x(t) be a solution of the Hamilton equation (2.4). The x(t) is called a
relative periodic orbit of period one if there exists g0 ∈ G independent of t such that

x(t + 1) = g0 · x(t), t ∈ R.

Put another way, the condition is expressed as φ1(x(t)) = g0 · x(t).

The notion of relative periodic orbits will be useful in the successive sections, where
variational methods for periodic orbits of the reduced equations (2.5) and (2.7) are described
and applied.

Periodic orbits of the reduced equations are related to relative periodic orbits of the
original Hamilton equation as follows: if a relative periodic orbit x(t) of (2.4) lies on
µ−1(λ), then according to the Marsden–Weinstein reduction procedure, x(t) projects to a
loop y(t) = πλ(x(t)), which becomes a periodic orbit of the Marsden–Weinstein reduced
system (2.5). Conversely, let y(t) be a periodic orbit of (2.5), and x0 be a point on µ−1(λ)

such that πλ(x0) = y(0). Then x(t) = φt(x0) is a relative periodic orbit of the Hamilton
equation (2.4).

In contrast with the above, we may apply the orbit reduction procedure. Let O be a
coadjoint orbit through λ ∈ g∗, and x(t) be a relative periodic orbit of (2.4) lying on µ−1(O).
By (2.8), the x(t) projects to a periodic orbit z(t) = πO(x(t)) of the orbit reduced system
(2.7). Conversely, let z(t) be a periodic orbit of (2.7), and x0 ∈ µ−1(O) be a point such that
πO(x0) = z(0). Then x(t) = φt(x0) also becomes a relative periodic orbit of (2.4).

In view of these, finding periodic orbits of the reduced systems (2.5) and (2.7) amounts
to finding relative periodic orbits of the original system (2.4).

Example 2.3. We take example 2.1 with restriction to P = G. In this case, the momentum
map µ : T ∗G → g∗ is put in the form

µ(αg) = R∗
gαg, g ∈ G,αg ∈ T ∗

g G,

where Rg denotes the right translation by g ∈ G. The reduced space MO = µ−1(O)/G

is naturally identified with the coadjoint orbit O itself, so that the canonical projection
πO : µ−1(O) → MO ∼= O is regarded as the restriction of µ to µ−1(O).

Now we assume that g is endowed with an Ad-invariant inner product 〈•, •〉, and that there
is a symmetric and positive-definite operator I : g → g with respect to this inner product. For
simplicity, we can identify g∗ with g using the Ad-invariant inner product, and then T ∗G with
T G. Let H be an autonomous Hamiltonian on T ∗G ∼= T G ∼= G × g given by

H(g, ξ) = 1
2 〈ξ, I−1(ξ)〉 for g ∈ G and ξ ∈ g.

Since the reduced Hamiltonian HO is expressed as HO(ξ) = 1
2 〈ξ, I−1(ξ)〉, the reduced

equation is written down in the form

ξ̇ = [ξ, I−1(ξ)]. (2.9)

Thus, if ξ0 is an eigenvector of I lying on O, then it is a fixed point of the above reduced
equation. Further, since the unreduced Hamilton equation ẋ = XH(x) is equivalent to the
equations

ξ̇ = [ξ, I−1(ξ)], g−1ġ = ξ,

5
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a solution of ẋ = XH(x) passing (g0, ξ0) ∈ G × g at t = 0 is given by (exp(tξ0)g0, ξ0).
This solution is a relative periodic orbit, and projects to a fixed point ξ0 of the reduced
equation (2.9).

The rest of this section deals with the formulation of a variational method for relative
periodic orbits of the Hamilton equation (2.4). We consider the space of paths in M,

P := {γ : R → M|γ (t + 1) = g0γ (t) for some g0 ∈ G}.
The tangent space to P at γ can be identified with

TγP = {X ∈ �(γ ∗T M)| ∃ξ ∈ g s.t. X(t + 1) − (g0)∗X(t) = ξM(γ (t + 1))},
where g0 ∈ G is determined by γ (t + 1) = g0γ (t). In fact, when we take a smooth map
u : (−ε, ε) × R → M such that

u(0, t) = γ (t) and u(s, t + 1) = g(s)u(s, t) for some g(s) ∈ G,

a one-parameter family of paths in P is induced by (−ε, ε) → P; s �→ u(s, •), which has the
tangent vector X = (∂su)|s=0 ∈ TγP at s = 0. Thus, by differentiating u(s, t+1) = g(s)u(s, t)

with respect to s at s = 0, we obtain X(t + 1) − g(0)∗X(t) = (dg/ds)g−1|s=0(γ (t + 1))

along γ .
Now we define an action functional on P to be

AH (γ ) :=
∫

[T ,T +1]
γ ∗� −

∫ T +1

T

H(t, γ (t)) dt, γ ∈ P,

where T ∈ R is a constant. The action functional AH is independent of the choice of T. In
fact, since � and H are invariant under the G-action and since Ht+1 = Ht , the integrands
�γ(t)(γ̇ (t)) and H(t, γ (t)) are one-periodic in t, so that the action AH (γ ) for γ ∈ P is equal
to

AH (γ ) =
∫ 1

0
�γ(t)(γ̇ ) dt −

∫ 1

0
H(t, γ (t)) dt.

Thus, we may put T = 0 without loss of generality.
We consider the variation of the action functional AH at γ ∈ P . Let u : (−ε, ε)×R → M

be the smooth map as above and let X = (∂su)|s=0 ∈ TγP be the variational vector field along
γ . The first variational formula for the action functional AH is given by

(dAH )γ (X) = d

ds

∣∣∣∣
s=0

AH (u(s, •))

= d

ds

∣∣∣∣
s=0

{
−

∫
[0,s]×[0,1]

u∗� −
∫ 1

0
H(t, u(s, t)) dt

+
∫ s

0
�u(s ′,1)

(
∂u

∂s ′

)
ds ′ −

∫ s

0
�u(s ′,0)

(
∂u

∂s ′

)
ds ′

}

=
∫ 1

0
�(γ̇ − XHt

(γ ),X) dt + �γ(1)(X(1)) − �γ(0)(X(0)).

Here we have used � = −d� and the Stokes theorem in the second equality. This formula
implies that γ ∈ P is a relative periodic orbit of (2.4) if and only if the variation (dAH )γ (X)

vanishes for any X ∈ TγP which is subject to the condition

�γ(1)(X(1)) − �γ(0)(X(0)) = 0.

Hence the variational method for relative periodic orbits of the Hamiltonian system (2.4) is
phrased as follows.

6
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Theorem 2.4. Define a distribution D on P to be

Dγ := {X ∈ TγP|�γ(1)(X(1)) − �γ(0)(X(0)) = 0}.
An element γ ∈ P is a relative periodic orbit of the Hamiltonian system (2.4) if and only if
the restriction of (dAH )γ to Dγ vanishes.

We will make a comment on the boundary condition �γ(1)(X(1)) − �γ(0)(X(0)) = 0 in
the last section.

Since, for X ∈ TγP , there exists ξ ∈ g satisfying X(1) − (g0)∗X(0) = ξM(γ (1)), the
condition determining D is rewritten in terms of the momentum map as

0 = �γ(1)(X(1)) − �γ(0)(X(0)) = �γ(1)(X(1) − (g0)∗X(0)) = (µ(γ (1)), ξ).

If we restrict P to a loop space, the boundary condition �γ(1)(X(1)) − �γ(0)(X(0)) = 0 is
satisfied automatically. The restriction to the loop space is not restrictive for dealing with
periodic orbits of the reduced equations (2.5) and (2.7).

3. Variational method for the Marsden–Weinstein reduced system

This section deals with a variational method for periodic orbits of the Marsden–Weinstein
reduced system (2.5). Since the reduced symplectic form �λ cannot be an exact two-form,
instead of formulating the variational principle on the loop space of the reduced space Mλ, we
consider an action functional for loops on M together with Lagrange multipliers taking values
in g in order to restrict orbits on the level set µ−1(λ). Then the reduction by G-symmetry
will yield one-to-one correspondence between periodic orbits of (2.5) and critical points of
the action functional up to gauge symmetry.

Throughout this section, we impose the following assumption so as to get the Marsden–
Weinstein reduction work well.

Assumption 3.1. An element λ ∈ g∗ is a regular value of the momentum map µ given by
(2.1), and the subgroup Gλ = {g ∈ G|Ad∗

gλ = λ} freely acts on the regular level set µ−1(λ).

Consider the free loop space on M with time-dependent Lagrange multipliers,

LMW := {(γ, ξ)|γ ∈ C∞(S1,M), ξ ∈ C∞(S1, g)},
where S1 is parametrized as R/Z. The loop space LMW is thought of as a Fréchet manifold
with compact-open topology. We define here the action functional on the loop space LMW by

AH,µ,λ(γ, ξ) :=
∫ 1

0
γ ∗� −

∫ 1

0
(H(t, γ (t)) − (µ(γ (t)) − λ, ξ(t))) dt, (γ, ξ) ∈ LMW,

where Ht ∈ C∞(M) is invariant under the G-action, and λ ∈ g∗ a regular value of µ. The
tangent space to LMW at (γ, ξ) is canonically identified with �(γ ∗T M) ⊕ C∞(S1, g). For
(X, η) ∈ T(γ,ξ)LMW = �(γ ∗T M) ⊕ C∞(S1, g), we take a smooth map u : (−ε, ε) × S1 →
M; (s, t) �→ u(s, t) such that u(0, t) = γ (t) and (∂su)(0, t) = X(t). The variation of the
functional AH,µ,λ is then given by

(dAH,µ,λ)(γ,ξ)(X, η) = d

ds

∣∣∣∣
s=0

AH,µ,λ(u(s, •), ξ + sη)

= d

ds

∣∣∣∣
s=0

{
−

∫
[0,s]×S1

u∗� −
∫ 1

0
(H(t, u(s, t))

7
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− (µ(u(s, t)) − λ, ξ(t) + sη(t))) dt

}

=
∫ 1

0
�γ(t)(γ̇ − XHt

(γ ) + ξ t
M(γ ),X) dt +

∫ 1

0
(µ(γ ) − λ, η) dt, (3.1)

where ξ t
M is the fundamental vector field generated by ξ(t) ∈ g. Thus, (γ, ξ) ∈ LMW is a

critical point of the action AH,µ,λ if and only if (γ, ξ) is subject to the equations

γ̇ = XHt
(γ ) − ξ t

M(γ ), µ(γ (t)) = λ. (3.2)

This implies that if (γ, ξ) is a critical point of AH,µ,λ, the orbit γ lies on the level set µ−1(λ).

Lemma 3.2. If (γ, ξ) ∈ LMW is a critical point of AH,µ,λ, then g(t) determined by g−1ġ = ξ

and g(0) = id is in Gλ. In particular, one has ξ(t) ∈ gλ := Lie(Gλ) for t ∈ S1.

Proof. It is sufficient to prove that g(t) ∈ Gλ, namely, Ad∗
g(t)λ = λ. By differentiating

µ(g(t)γ (t)) with respect to t and by using the G-equivariance of µ, we have

d

dt
µ(gγ ) = (dµ)gγ

(
g∗γ̇ + g∗ξ t

M(γ )
) = Ad∗

g

(
(dµ)γ (γ̇ + ξ t

M(γ ))
) = Ad∗

g(dµ)γ (XHt
).

According to this formula, we obtain, for any η ∈ g,

d

dt
(µ(gγ ), η) = (Ad∗

g(dµ)γ (XHt
), η) = ((dµ)γ (XHt

), Adg−1η)

= �γ(t)

(
(Adg−1η)tM(γ ),XHt

(γ )
) = −dHt

(
(Adg−1η)tM(γ )

) = 0,

where we have used the G-invariance of Ht . It then follows that µ(gγ ) is preserved. Owing
to g(0) = id, the g(t) is found to be in Gλ on account of

λ = µ(γ ) = µ(gγ ) = Ad∗
gµ(γ ) = Ad∗

gλ.

This completes the proof. �

Lemma 3.3. If (γ, ξ) is a critical point of the action functional AH,µ,λ, then γ projects to a
one-periodic orbit πλ ◦ γ of the reduced Hamiltonian system (2.5) on Mλ.

Proof. Let (γ, ξ) be a critical point of AH,µ,λ. Then, from (3.2), one has γ̇ = XHt
(γ )−ξ t

M(γ )

and µ(γ ) = λ, and further ξ(t) ∈ gλ from lemma 3.2. Differentiating a loop πλ ◦ γ with
respect to t, we have

d

dt
πλ(γ (t)) = (πλ)∗

(
XHt

(γ (t)) − ξ t
M(γ (t))

) = XHλ
t
(πλ(γ (t))).

This implies that the loop πλ ◦ γ is a one-periodic orbit of the reduced Hamiltonian system
(2.5) on Mλ = µ−1(λ)/Gλ. This ends the proof. �

We define an action of the infinite-dimensional group Gλ = C∞(S1,Gλ) on LMW in the
gauge-like manner

g · (γ, ξ) := (gγ, Adgξ − ġg−1), g ∈ Gλ, (γ, ξ) ∈ LMW, (3.3)

where g ∈ Gλ pointwise acts on γ ∈ C∞(S1,M); (gγ )(t) = g(t)γ (t). Though the functional
AH,µ,λ itself is not invariant under the action of Gλ, it has the Gλ-symmetry in the following
sense.

Proposition 3.4

(1) Let Crit(AH,µ,λ) denote the set of critical points of AH,µ,λ. Then

(γ, ξ) ∈ Crit(AH,µ,λ) �⇒ g · (γ, ξ) ∈ Crit(AH,µ,λ).

8
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(2) Let (γ, ξ) ∈ LMW. The difference between the actions for (γ, ξ) and g ·(γ, ξ) with g ∈ Gλ

is given by

AH,µ,λ(g · (γ, ξ)) − AH,µ,λ(γ, ξ) =
∫ 1

0
(λ, g−1ġ) dt. (3.4)

(3) Let (γ, ξ) ∈ LMW. Suppose that γ : S1 → M lies on the level set µ−1(λ). Then we have

AH,µ,λ(g · (γ, ξ)) = AH,µ,λ(γ, ξ)

where g is in the identity component of Gλ.

Proof.

(1) The proof runs straightforward as follows: if γ̇ = XHt
(γ ) − ξ t

M(γ ), then

d

dt
(gγ ) = g∗γ̇ + (ġg−1)tM(gγ ) = g∗

(
XHt

(γ ) − ξ t
M(γ )

)
+ (ġg−1)tM(gγ )

= XHt
(gγ ) − (Adgξ − ġg−1)tM(gγ ).

(2) Let (γ, ξ) ∈ LMW and g ∈ Gλ. On account of d(gγ )/dt = g∗γ̇ + g∗(g−1ġ)tM(γ ), we
obtain

AH,µ,λ(g · (γ, ξ)) =
∫ 1

0
�g(t)γ (t)(g∗γ̇ + g∗(g−1ġ)tM(γ )) dt

−
∫ 1

0
(H(t, g(t)γ (t)) − (µ(g(t)γ (t)) − λ, Adgξ − ġg−1)) dt

=
∫

S1
γ ∗� −

∫ 1

0
(H(t, γ (t)) − (µ(γ ) − λ, ξ)) dt

+
∫ 1

0
�γ(t)

(
(g−1ġ)tM(γ )

)
dt −

∫ 1

0
(µ(γ (t)) − λ, g−1ġ) dt

= AH,µ,λ(γ, ξ) +
∫ 1

0
(λ, g−1ġ) dt,

where we have used the G-invariance of � and H in the second equality, and definition
(2.1) of the momentum map µ in the third equality.

(3) We show that if γ lies on µ−1(λ) and g is contained in the identity component of Gλ, then
the right-hand side of (3.4) vanishes. From µ(γ ) = λ, it is put in the form∫ 1

0
(λ, g−1ġ) dt =

∫ 1

0
(µ(gγ ), ġg−1) dt =

∫ 1

0
�g(t)γ (t)((ġg−1)tM) dt

=
∫ 1

0
�g(t)γ (t)

(
d

dt
(gγ ) − g∗γ̇

)
dt

=
∫

S1
(gγ )∗� −

∫
S1

γ ∗�,

where in the third equality, we have used the fact that d(gγ )/dt = g∗γ̇ + (ġg−1)tM(gγ ).
Since g is in the identity component of Gλ, there is a map h : [0, 1] × S1 → Gλ such that
h(0, t) = id and h(1, t) = g(t). With this h, we define u : [0, 1] × S1 → M by

u(s, t) = h(s, t)γ (t), (s, t) ∈ [0, 1] × S1, (3.5)

which is subject to the boundary conditions u(0, t) = γ (t) and u(1, t) = g(t)γ (t). Then,
from the Stokes theorem and � = −d�, we obtain∫ 1

0
(λ, g−1ġ) dt =

∫
S1

(gγ )∗� −
∫

S1
γ ∗� = −

∫
[0,1]×S1

u∗�.

9
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Since u(s, t) ∈ µ−1(λ) if γ (t) ∈ µ−1(λ), we have∫ 1

0
(λ, g−1ġ) dt = −

∫
[0,1]×S1

u∗� = −
∫ 1

0
ds

∫ 1

0
dt (π∗

λ�λ)

(
∂u

∂s
,
∂u

∂t

)

= −
∫ 1

0
ds

∫ 1

0
dt �λ

(
(πλ)∗

∂u

∂s
, (πλ)∗

∂u

∂t

)
= 0.

In the last equality, we have used the fact that (πλ)∗∂su vanishes, which is a consequence
of definition (3.5) of u. Hence, the quantity

∫ 1
0 (λ, g−1ġ) dt vanishes. These prove the

proposition. �

Now we stand in a position to state a main theorem.

Theorem 3.5 (Variational Method I). Denote by Per(Hλ) the set of one-periodic orbits of
the reduced system (2.5) on Mλ. Then there exists a one-to-one correspondence between
Crit(AH,µ,λ)/Gλ and Per(Hλ).

Proof. We have already obtained a projection

Crit(AH,µ,λ) −→ Per(Hλ); (γ, ξ) �−→ πλ ◦ γ. (3.6)

We show that the projection is surjective. Let φt be the flow of the original system (2.4)
on M, and γ̃ : S1 → Mλ is a one-periodic orbit of the reduced system (2.5). Choose an
arbitrary loop γ : S1 → µ−1(λ) with πλ ◦ γ = γ̃ . Then there exists g(t) in Gλ such that
φt(γ (0)) = g(t)γ (t) with g(0) = id. Hence, we have

XHt
(g(t)γ (t)) = d

dt
(g(t)γ (t)) = g(t)∗γ̇ + g(t)∗ξ t

M(γ ),

where ξ = g−1ġ. Since Ht is G-invariant, the above equation should be G-related to
γ̇ = XHt

(γ ) − ξ t
M(γ ) in order that g(t)γ (t) is subject to the equation of motion on µ−1(λ).

Thus, our task is to prove that ξ = g−1ġ is periodic, i.e., ξ(t + 1) = ξ(t) for all t ∈ R.
Since φt(γ (0)) = g(t)γ (t) is a relative periodic orbit of (2.4), there exists a g0 ∈ Gλ such
that g(t + 1)γ (t + 1) = g0g(t)γ (t) for all t. Since Gλ freely acts on µ−1(λ), and since
γ (t + 1) = γ (t), we have g(t + 1) = g0g(t), equivalently, g(t + 1) = g(1)g(t). This implies
that ξ = g−1ġ is periodic.

We now assume that πλ ◦ γ1 = πλ ◦ γ2 for (γi, ξi) ∈ Crit(AH,µ,λ), i = 1, 2. From the
definition of πλ, there is g ∈ Gλ such that γ2(t) = g(t)γ1(t). Differentiation of this equation
results in

XHt
(gγ1) − (Adgξ1 − ġg−1)tM(gγ1) = d

dt
(gγ1) = γ̇2 = XHt

(γ2) − (ξ2)
t
M(γ2).

Thus, it follows that ξ2 = Adgξ1 − ġg−1, because Gλ freely acts on µ−1(λ). Then (γ1, ξ1)

and (γ2, ξ2) are Gλ-equivalent. This implies that the map induced by (3.6),

Crit(AH,µ,λ)/Gλ −→ Per(Hλ); [γ, ξ ] �−→ πλ ◦ γ, (3.7)

is injective. It is clear that map (3.7) is surjective, since projection (3.6) is surjective. This
ends the proof. �

Remark. We comment here on the relation between the present results and those by Ibort
and Ontalba [IO96]. What they considered is the action functional (1.1) restricted to the
space C∞(S1, µ−1(λ)) to show that the restricted functional satisfies the similar proposition
[IO96, proposition 5] as proposition 3.4. Their characterization for periodic orbits of the
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Marsden–Weinstein reduced system (2.5) is to view such orbits as zeros of a one-form αH,µ,λ

on C∞(S1,Mλ), which is defined to be

�∗
λαH,µ,λ = d(AH |C∞(S1;µ−1(λ))),

where �λ : C∞(S1, µ−1(λ)) → C∞(S1,Mλ) is the projection induced by πλ : µ−1(λ) → Mλ,
and d denotes the formal exterior derivation on C∞(S1, µ−1(λ)).

We have to point out that functionals A : C∞(S1, µ−1(λ)) → R satisfying dA =
�∗

λαH,µ,λ are not unique. In fact, for ξ ∈ C∞(S1, gλ), functionals of the form

Aξ(γ ) := AH (γ ) +
∫ 1

0
(µ(γ (t)), ξ(t)) dt, γ ∈ C∞(S1;µ−1(λ))

satisfy dAξ = �∗
λαH,µ,λ, which means that critical points of Aξ are projected to periodic orbits

of (2.5) through �λ. Put another way, there are an infinite number of variational methods for
periodic orbits of (2.5) which are parametrized by ξ ∈ C∞(S1, gλ). In particular, Ibort and
Ontalba’s method is interpreted as that in the case ξ ≡ 0.

However, those methods should be unified because the reduced Hamiltonian system is
unique. Our variational method (theorem 3.5) is a proposal for a unified characterization of
periodic orbits of (2.5), where the parameter ξ of characterizations is taken as a Lagrange
multiplier, and is considered as the freedom of gauge as well.

4. Variational method for the orbit reduced system in the case π1(O) = 0

In the previous section, we have established a variational method for finding periodic orbits of
the Marsden–Weinstein reduced system (2.5). This section deals with a variational method for
periodic orbits of the reduced system through the orbit reduction. A key to such a variational
method is that there is a symplectic diffeomorphism

(MO,�O) ∼= (M × O)//G,

where (M ×O)//G denotes the symplectic quotient of the symplectic manifold (M ×O,� ⊕
(−ωO)) by the diagonal G-action g · (x, λ) = (gx, Ad∗

gλ) with g ∈ G and (x, λ) ∈ M × O.
The momentum map with respect to the G-action on M × O is given by

µ ⊕ (−ι) : M × O → g∗,

where ι : O ↪→ g∗ is the inclusion which is viewed as a momentum map with respect to the
coadjoint action. This fact would imply that we could obtain the variational method for periodic
orbits of the orbit reduced system (2.7), like theorem 3.5. In other words, we might apply the
previous method in the case λ = 0 by replacing (M,�) and µ with (M ×O,�⊕ (−ωO)) and
µ ⊕ (−ι), respectively.

However, since the KKS form ωO is not always exact, the variational method in the
previous section fails to work. Of course, it is a strong restriction to assume that ωO is an
exact two-form. For example, if G = SO(3), then a generic coadjoint orbit O is two-sphere
S2, and ωO, which proves to be an area form on O ∼= S2, is not exact.

To take ωO into an action functional, we introduce the universal covering space of the
free loop space on O. For simplicity, we assume the following hypothesis.

Assumption 4.1

(1) A coadjoint orbit O ⊂ g∗ passes through a regular value of µ, and G freely acts on
µ−1(O).

(2) O is simply connected, i.e., π1(O) = 0.

11
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Condition (1) is needed to get the orbit reduction to work well and (2) is assumed in order to
construct an action functional on the loop space of M ×O together with Lagrange multipliers.

Let L(O) = C∞(S1,O) be the free loop space on the coadjoint orbit O, which consists
of contractible loops on the assumption π1(O) = 0. The universal covering space of L(O)

can be described as follows: for a fixed point p0 ∈ O, let L̃(O) be

L̃(O) :=
{
(�, �̄)

∣∣∣∣� ∈ C∞(S1,O), �̄ ∈ C∞(D2,O)

�̄(0) = p0, �̄(e2π it ) = �(t), t ∈ R

}/
∼,

where D2 = {z ∈ C||z| � 1}. The equivalence relation stated above is given by

(�1, �̄1) ∼ (�2, �̄2) ⇐⇒
{
�1 = �2,

�̄1#(−�̄2) is homotopic to a point,
(4.1)

where −�̄2 is the disc with the orientation opposite to �̄2, and where �̄1#(−�̄2) denotes the
glued sphere of two discs �̄1,−�̄2 along the boundary �1 = �2. We denote by [�, �̄] the
equivalence class of a pair (�, �̄). The space L̃(O) is the universal covering space of the free
loop space L(O), on which π2(O) acts in the manner, A · [�, �̄] := [�,A#�̄] for [�, �̄] ∈ L̃(O)

and A ∈ π2(O). Here the A#�̄ : D2 → O is defined as follows: the element A ∈ π2(O) can
be represented by a smooth map A : S2 = C ∪ {∞} → O such that A(0) = A(∞) = p0.
Then the smooth map A#�̄ : D2 → M is defined to be

(A#�̄)(z) :=

⎧⎪⎪⎨
⎪⎪⎩

A

(
z

1 − ρ1(2|z|)
)

, if |z| � 1

2
,

�̄

(
ρ2(2|z| − 1)

z

|z|
)

, if
1

2
� |z| � 1,

where ρ1, ρ2 : [0, 1] → [0, 1] are non-decreasing smooth functions such that

ρ1(r) =
{
r if 0 � r � 1 − 2ε,

1 if 1 − ε � r � 1,

ρ2(r) =
{

0 if 0 � r � ε,

r if 2ε � r � 1,

for a sufficiently small ε > 0. Since (A#�̄)(0) = A(0) = p0 and (A#�̄)(e2π it ) = �̄(e2π it ) =
�(t), the pair (�, A#�̄) determines an element of L̃(O). We do not write into L̃(O) its
dependence on p0 ∈ O, ρ1 and ρ2.

Now we define an action functional on the extended loop space,

LO := {(γ, [�, �̄], ξ)|γ ∈ C∞(S1,M), [�, �̄] ∈ L̃(O), ξ ∈ C∞(S1, g)},
by

AH,µ,O(γ, [�, �̄], ξ) :=
∫

S1
γ ∗� +

∫
D2

�̄∗ωO −
∫ 1

0
(H(t, γ (t)) − (µ(γ (t)) − �(t), ξ(t))) dt.

From definition (4.1) of the equivalence relation, it is easy to see that this functional is
independent of the choice of a representative of [�, �̄], and then well defined.

Lemma 4.2. An element (γ, [�, �̄], ξ) ∈ LO is a critical point of the action functional AH,µ,O
if and only if (γ, [�, �̄], ξ) is subject to the equations

γ̇ = XHt
(γ ) − ξ t

M(γ ), µ(γ (t)) = �(t), �̇ = −ad∗
ξ �. (4.2)

Thus, if (γ, [�, �̄], ξ) is a critical point of AH,µ,O, then γ lies on µ−1(O).

12
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Proof. We first remark that the tangent space T(γ,[�,�̄],ξ)LO is canonically identified with

�(γ ∗T M) ⊕ T[�,�̄]L̃(O) ⊕ C∞(S1, g) ∼= �(γ ∗T M) ⊕ �(�∗TO) ⊕ C∞(S1, g).

For X ∈ �(γ ∗T M), Y ∈ �(�∗TO) and η ∈ TξC
∞(S1, g) = C∞(S1, g), we take up smooth

maps u : (−ε, ε) × S1 → M, v : (−ε, ε) × S1 → O and v̄ : (−ε, ε) × D2 → O such that

u(0, t) = γ (t), v(0, t) = �(t),

v̄(s, e2π it ) = v(s, t), v̄(0, z) = �̄(z),

(∂su)(0, t) = X(t), (∂sv)(0, t) = Y (t),

for s ∈ (−ε, ε), t ∈ S1 and z ∈ D2. Note here that v̄(s, •) is homotopic, with the boundary
fixed, to the map

D2 −→ O; z �−→
{
v̄(0, 2z) = �̄(0, 2z) if |z| � 1/2,

v(s(2|z| − 1), t) if 1/2 � |z| � 1 and z = |z| e2π it

and thereby one has∫
D2

v̄(s, •)∗ωO =
∫

[0,s]×S1
v∗ωO +

∫
D2

�̄∗ωO (4.3)

for any sufficiently small |s| > 0.
Since a smooth path

(−ε, ε) −→ LO; s �−→ (u(s, •), [v(s, •), v̄(s, •)], ξ + sη)

has the tangent vector (X, Y, η) at s = 0, the variation (dAH,µ,O)(γ,[�,�̄],ξ)(X, Y, η) is calculated
as

(dAH,µ,O)(γ,[�,�̄],ξ)(X, Y, η)

= d

ds

∣∣∣∣
s=0

AH,µ,O(u(s, •), [v(s, •), v̄(s, •)], ξ + sη)

= d

ds

∣∣∣∣
s=0

{
−

∫
[0,s]×S1

u∗� +
∫

[0,s]×S1
v∗ωO +

∫
D2

�̄∗ωO

−
∫ 1

0
(H(t, u(s, t)) − (µ(u(s, t)) − v(s, t), ξ(t) + sη(t))) dt

}

=
∫ 1

0
�γ(t)

(
γ̇ − XHt

(γ ) + ξ t
M(γ ),X

)
dt

−
∫ 1

0
(ωO)�(t)

(
�̇ + X

h
ξ
t
(�), Y

)
+

∫ 1

0
(µ(γ ) − �, η) dt, (4.4)

where h
ξ
t is a function on O given by h

ξ
t (λ) = (λ, ξ(t)), λ ∈ O, and where X

h
ξ
t

is the

Hamiltonian vector field associated with h
ξ
t on O. In the second equality, we have used (4.3).

A straightforward computation shows that X
h

ξ
t
(λ) = ad∗

ξ(t)(λ). Hence (γ, [�, �̄, ξ ]) is a
critical point of AH,µ,O if and only if (4.2) holds. This ends the proof. �

These critical points of AH,µ,O are related to one-periodic orbits of the reduced Hamilton
equation (2.7) through the orbit reduction as follows.

Lemma 4.3. If (γ, [�, �̄], ξ) is a critical point of the functional AH,µ,O, then γ projects to a
one-periodic orbit πO ◦ γ of the reduced Hamilton equation (2.7).
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Proof. Assume that (γ, [�, �̄], ξ) is a critical point of the functional AH,µ,O. From lemma 4.2,
it satisfies γ̇ = XHt

(γ ) − ξ t
M(γ ). Thus, πO ◦ γ is subject to the reduced Hamilton equation

d(πO ◦ γ )/dt = XHO
t
(πO ◦ γ ), because of (2.8) and (πO)∗(ξ t

M) = 0. This completes the
proof. �

The loop space LO admits a natural action of the group π2(O) in the manner

A · (γ, [�, �̄], ξ) := (γ,A · [�, �̄], ξ) = (γ, [�,A#�̄], ξ) (4.5)

for A ∈ π2(O). The quotient space LO/π2(O) is clearly identified with

LO/π2(O) = {
(γ, �, ξ)|γ ∈ C∞(S1,M), � ∈ C∞(S1,O), ξ ∈ C∞(S1, g)

}
,

on which the infinite-dimensional group G = C∞(S1,G) acts in the manner

g · (γ, �, ξ) := (gγ, Ad∗
g�, Adgξ − ġg−1), g ∈ G, (4.6)

where the pointwise action of g ∈ G on � is defined by (Ad∗
g�)(t) = Adg(t)�(t).

The action functional AH,µ,O has the π2(O) and G-symmetry in the following sense.

Proposition 4.4

(1) Let Crit(AH,µ,O) denote the set of critical points of AH,µ,O. Then, action (4.5) of π2(O)

leaves Crit(AH,µ,O) invariant, that is,

Crit(AH,µ,O) � (γ, [�, �̄], ξ) �−→ A · (γ, [�, �̄], ξ) ∈ Crit(AH,µ,O),

for any A ∈ π2(O). This implies that there is a natural projection of Crit(AH,µ,O) to

Crit(AH,µ,O)/π2(O) ∼=
{
(γ, �, ξ)

∣∣∣∣γ ∈ C∞(S1,M), � ∈ C∞(S1,O), ξ ∈ C∞(S1, g∗),
γ̇ = XHt

(γ ) − ξ t
M(γ ), µ(γ (t)) = �(t), �̇ = −adξ �,

}
.

Furthermore, Crit(AH,µ,O)/π2(O) is invariant under action (4.6) of G.
(2) Let (γ, [�, �̄], ξ) ∈ LO. Then we have, for any A ∈ π2(O),

AH,µ,O(A · (γ, [�, �̄], ξ)) = AH,µ,O(γ, [�, �̄], ξ) + ωO(A),

where ωO(A) denotes the integral of ωO over the sphere A : S2 → O.

Proof.

(1) From lemma 4.2, it is obvious that A · (γ, [�, �̄], ξ) is a critical point of AH,µ,O if
(γ, [�, �̄], ξ) is so.

If (γ, �, ξ) is in Crit(AH,µ,O)/π2(O), it satisfies (4.2). We can easily check that
g · (γ, �, ξ) also satisfies (4.2), so that g · (γ, �, ξ) is in Crit(AH,µ,O)/π2(O).

(2) To prove the assertion, it is sufficient to show that
∫
D2(A#�̄)∗ωO = ∫

D2 �̄∗ωO + ωO(A).
From the definition of A#�̄, we obtain∫

|z|�1/2
(A#�̄)∗ωO =

∫ 1

1/2
dr ′

∫ 1

0
dt ωO

(
∂

∂r ′ �(ρ2(2r ′ − 1) e2π it ),
∂

∂t
�(ρ2(2r − 1) e2π it )

)

=
∫ 1

0
dr

∫ 1

0
dt ωO

(
∂�

∂r
(r e2π it ),

∂�

∂t
(r e2π it )

)

=
∫

D2
�̄∗ωO.

Further, the restriction of A#�̄ to {z ∈ C||z| � 1/2} is regarded as a map from S2 to O,
which is homotopic to A. Thus, the integral

∫
|z|�1/2(A#�̄)∗ωO is equal to ωO(A). Put

together, these equations show that
∫
D2(A#�̄)∗ωO = ∫

D2 �̄∗ωO + ωO(A). �
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The action functional AH,µ,O has another symmetry, which is corresponding with
proposition 3.4 (3). To prove this, we need some preparation.

Let (γ, [�, �̄], ξ) ∈ LO, and g ∈ G contained in the identity component of the group G.
Then, there is a map h : [0, 1] × S1 → G such that h(0, t) = id and h(1, t) = g(t). With this
h, we can choose a map �̄′ : D2 → O which satisfies �̄′(e2π it ) = Ad∗

g(t)�(t), and is homotopic
to the map

D2 −→ O; z �−→
{
�̄(2z) if 0 � |z| � 1/2,

Ad∗
h(2|z|−1,t)�(t) if 1/2 � |z| � 1 and z = |z| e2π it ,

(4.7)

with the boundary fixed. Note here that since �̄′ is homotopic to map (4.7), the integral∫
D2(�̄

′)∗ωO is equal to∫
D2

(�̄′)∗ωO =
∫

D2
�̄∗ωO +

∫ 1

0
ds

∫ 1

0
dt ωO

(
∂

∂s
Ad∗

h(s,t)�(t),
∂

∂t
Ad∗

h(s,t)�(t)

)
. (4.8)

Now we are in a position to state the G-symmetry of the action functional AH,µ,O as
follows.

Proposition 4.5. Let (γ, [�, �̄], ξ) ∈ LO satisfying µ(γ (t)) = �(t), and g ∈ G be in the identity
component of G. Choose a smooth map �̄′ : D2 → O which satisfies �̄′(e2π it ) = Ad∗

g(t)�(t),
and which is homotopic, with the boundary fixed, to the map defined by (4.7). Then the equality

AH,µ,O(gγ, [Adg�, �̄
′], Adgξ − ġg−1) = AH,µ,O(γ, [�, �̄], ξ) (4.9)

holds.

Proof. In the same manner as in the proof of proposition 3.4 (3), the difference between the
quantities on the left- and right-hand side of (4.9) proves to be expressed as

AH,µ,O(gγ, [Adg�, �̄
′], Adgξ − ġg−1) − AH,µ,O(γ, [�, �̄], ξ)

=
∫ 1

0
�γ(t)((g

−1ġ)tM) dt +
∫

D2
(�̄′)∗ωO −

∫
D2

�̄∗ωO. (4.10)

Here we define u : [0, 1] × S1 → M to be

u(s, t) = h(s, t)γ (t), (s, t) ∈ [0, 1] × S1.

In the same discussion as in the proof of proposition 3.4 (3), the quantity
∫ 1

0 �γ(t)((g
−1ġ)tM) dt

is brought into the form∫ 1

0
�γ(t)((g

−1ġ)tM) dt = −
∫

[0,1]×S1
u∗� = −

∫
[0,1]×S1

u∗(π∗
O�O + µ∗ωO)

= −
∫ 1

0
ds

∫ 1

0
dt �O

(
(πO)∗

∂u

∂s
, (πO)∗

∂u

∂t

)

−
∫ 1

0
ds

∫ 1

0
dt ωO

(
∂

∂s
µ ◦ u,

∂

∂t
µ ◦ u

)
,

where we have used the fact that u(s, t) = h(s, t)γ (t) ∈ µ−1(O) and definition (2.6) of �O
in the second equality. The definition of u implies that (πO)∗∂su vanishes. Thus, using the
assumption µ(γ (t)) = �(t) together with (4.8), we can get∫ 1

0
�γ(t)((g

−1ġ)tM) dt = −
∫ 1

0
ds

∫ 1

0
dt ωO

(
∂

∂s
Ad∗

h(s,t)�(t),
∂

∂t
Ad∗

h(s,t)�(t)

)

= −
∫

D2
(�̄′)∗ωO +

∫
D2

�̄∗ωO. (4.11)

Hence, (4.10) and (4.11) are put together to result in (4.9). This ends the proof. �
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Like theorem 3.5, Crit(AH,µ,O)/π2(O) projects to the set of one-periodic orbits of the
reduced system (2.7).

Theorem 4.6 (Variational Method II). Denote by Per(HO) the set of one-periodic orbits of the
reduced system (2.7) through the orbit reduction. Then, under assumption 4.1, there exists a
one-to-one correspondence

Crit(AH,µ,O)/π2(O)

G
∼= Per(HO).

Proof. The proof of the theorem runs in parallel to that of theorem 3.5. First of all, lemma 4.3
shows that there exists the projection from Crit(AH,µ,O)/π2(O) to Per(HO),

Crit(AH,µ,O)/π2(O) −→ Per(HO); (γ, �, ξ) �−→ πO ◦ γ. (4.12)

We show that this map (4.12) is surjective. Let γ̃ be a one-periodic orbit of the reduce system
(2.7), and γ : S1 → µ−1(O) be any lift of γ̃ . For the flow φt of the original system (2.4), we
can find g(t) ∈ G such that φt(γ (0)) = g(t)γ (t). By the same discussion as in theorem 3.5,
ξ := g−1ġ is proved to be periodic in t, and the equation γ̇ = XHt

(γ ) − ξ t
M(γ ) holds true.

Furthermore, the �(t) := µ(γ (t)) is subject to

�̇ = −ad∗
ξ �.

In fact, we can obtain this equation by differentiating Ad∗
g(t)�(t) = µ(g(t)γ (t)) =

µ(φt (γ (0))) = µ(γ (0)). Because of assumption 4.1, we can find �̄ : D2 → O which
bounds � as its boundary. Hence, the triple (γ, [�, �̄], ξ) constructed above is a critical point
of AH,µ,O, and projects through πO to γ̃ = πO ◦ γ . This means the surjectivity of (4.12).

Next, we prove that (γi, �i, ξi) ∈ Crit(AH,µ,O)/π2(O), i = 1, 2, are G-equivariant if
πO ◦ γ1 = πO ◦ γ2. From the definition of πO, there is g(t) ∈ G satisfying γ2(t) = g(t)γ1(t),
so that we have

XHt
(γ2) − ξ2(γ2) = γ̇2 = d

dt
(gγ1) = XHt

(gγ1) − (Adgξ − ġg−1)tM(gγ1).

The assumption of the free action of G on µ−1(O) implies that ξ2 = Ad∗
gξ − ġg−1. From

�i = µ(γi) together with γ2 = gγ1, it follows that �2 = Ad∗
g�1. Thus, (γ1, �1, ξ1) is related

to (γ2, �2, ξ2) by (γ2, �2, ξ2) = g · (γ1, �1, ξ1). This implies that projection (4.12) yields to a
well-defined injective map

Crit(AH,µ,O)/π2(O)

G
−→ Per(HO); (γ, [�, �̄], ξ) �−→ πO ◦ γ.

This map is also surjective because the map (4.12) is so. This completes the proof. �

Theorem 4.7. LetO be a coadjoint orbit in g∗ through a regular value λ ∈ g∗ of the momentum
map µ : M → g∗. Then (Crit(AH,µ,O)/π2(O))/G can be identified with Crit(AH,µ,λ)/Gλ

under hypothesis 4.1.

Proof. We directly show the assertion by constructing bijections between Crit(AH,µ,λ)/Gλ

and (Crit(AH,µ,O)/π2(O))/G.
A critical point (γ, ξ) of AH,µ,λ is naturally regarded as a critical point of AH,µ,O. Indeed,

by (3.2) and lemma 4.2, (γ, [�λ, �̄λ], ξ) is a critical point of AH,µ,O, where �λ and �̄λ are the
constant maps from S1 and D2 to λ, respectively. Thus, this correspondence induces a
well-defined map

i :
Crit(AH,µ,λ)

Gλ

−→ Crit(AH,µ,O)/π2(O)

G
; [γ, ξ ] �−→ [γ, �λ, ξ ],

16
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where [γ, �λ, ξ ] is the equivalence class with the representative (γ, �λ, ξ). Note here that the
map i is well defined. In fact, for (γ, ξ) ∈ Crit(AH,µ,O) and g ∈ Gλ ⊂ G, one has

i([g · (γ, ξ)]) = [gγ, �λ, Adgξ − ġg−1] = [g · (γ, �λ, ξ)] = i([γ, ξ ]).

Next, we construct a map from (Crit(AH,µ,O)/π2(O))/G to Crit(AH,µ,λ)/Gλ. Let
(γ, �, ξ) be in Crit(AH,µ,O)/π2(O). Without loss of generality, we may suppose that
µ(γ (0)) = �(0) = λ. Otherwise, we can replace (γ, �, ξ) by (kγ, Ad∗

k�, Adkξ), where k
is an element of G such that µ(γ (0)) = �(0) = Ad∗

k−1λ, and is viewed as a constant map
S1 → G; t �→ k.

Now we define a path t �→ g(t) in G as the solution of the differential equation g−1ġ = ξ

with the initial condition g(0) = id. Since ξ is one-periodic in t, we have g(t + 1) = g(1)g(t).
The gγ is subject to the Hamilton equation (2.4)

d

dt
gγ = XHt

(gγ ) − (Adgξ − ġg−1)tM(gγ ) = XHt
(gγ ),

and then lies on the level set µ−1(γ (0)) = µ−1(λ). However, the pair (gγ, 0) is not a critical
point of AH,µ,λ because gγ is not a loop in µ−1(λ). In what follows, we construct h(t) ∈ Gλ

such that h−1gγ becomes a loop in µ−1(λ).
Let η0 ∈ g be an arbitrary element independent of t, and τ : [0, 1] → [0, 1] be a smooth

map satisfying

τ(t) =
{

0 if 0 � t � ε,

1 if 1 − ε � t � 1,

where ε > 0 is a sufficiently small constant. Using τ(t), we put

ξ̃ (t) = η0 + τ̇ (t) e−(t−τ(t))η0(ξ(τ (t)) − η0) e(t−τ(t))η0 , t ∈ [0, 1].

From ξ(t + 1) = ξ(t) and from the definition of τ(t), ξ̃ (t) is equal to η0 for 0 � t � ε and
1 − ε � t � 1, so that ξ̃ is a periodic map from R to g of period one, which we may view as
ξ̃ : S1 → g.

Lemma 4.8. Define a map h : R → G to be a solution of h−1ḣ = ξ̃ under the initial condition
h(0) = id. The map h is explicitly written as

h(t) = g([t] + τ(t − [t])) e(t−[t]−τ(t−[t]))η0 ,

where [t] denotes the integer which is maximal among integers not greater than t. In particular,
we have h(t + 1) = g(1)h(t).

We postpone the proof of this lemma, and proceed with the proof of the theorem.
Since g(t + 1) = g(1)g(t) and h(t + 1) = g(1)h(t), γ ′ := h−1gγ and ξ ′ :=

Adh−1gξ − d(h−1g)/dt · (h−1g)−1 are found to be periodic in t. Further, it can be easily
verified that (γ ′, ξ ′) is a critical point of AH,µ,λ. Hence we can define a map

Crit(AH,µ,O)/π2(O) −→ Crit(AH,µ,λ); (γ, �, ξ) �−→ (γ ′, ξ ′). (4.13)

We show that map (4.13) projects a map from (Crit(AH,µ,O)/π2(O))/G to
Crit(AH,µ,λ)/Gλ. Let (γ, �, ξ) ∈ Crit(AH,µ,O)/π2(O) with µ(γ (0)) = λ and k ∈ G. Without
loss of generality, we may assume that k(0) = id. As was done in the above, we bring
k · (γ, �ξ) = (kγ, Ad∗

k�, Adkξ − k−1k̇) into a relative periodic orbit g̃kγ lying on µ−1(λ),
where g̃ is the solution of g̃−1 ˙̃g = Adkξ − k−1k̇ with g̃(0) = id. Since both gγ and g̃kγ

are subject to the Hamilton equation (2.4) and since g(0)γ (0) = g̃(0)k(0)γ (0) = γ (0), they

17
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should coincide with each other. This implies that (4.13) maps (γ, �, ξ) and k · (γ, �, ξ) into
the same critical point of AH,µ,λ. Thus, map (4.13) canonically induces the map

j :
Crit(AH,µ,O)/π2(O)

G
−→ Crit(AH,µ,λ)

Gλ

; [γ, �, ξ ] �−→ [γ ′, ξ ′].

Finally, we prove that i and j are bijections. The equality j ◦ i = id is easy to prove from

(j ◦ i)([γ, ξ ]) = j ([γ, �λ, ξ ]) = [γ, ξ ], [γ, ξ ] ∈ Crit(AH,µ,λ).

In order to show that i ◦ j = id, we continue to use the same notations g, h and (γ ′, ξ ′) as in
(4.13). Since h−1g satisfies Ad∗

h(t)−1g(t)
�(t) = λ because of the construction of h, one obtains

(i ◦ j)([γ, �, ξ ]) = i([γ ′, ξ ′]) = [γ ′, �λ, ξ
′] = [γ, Ad∗

g−1h�λ, ξ ] = [γ, �, ξ ],

which proves that i ◦ j = id. This proves that i and j are bijectives.
To complete the proof of theorem 4.7, we need to prove lemma 4.8.

Proof of lemma 4.8. A straightforward calculation provides a solution h(t) for t ∈ [0, 1] in
the form

h(t) = g(τ(t)) e(t−τ(t))η0 for t ∈ [0, 1].

In particular, one has h(1) = g(1). Since ξ̃ is one-periodic in t, we have h(t +1) = h(1)h(t) =
g(1)h(t). Thus, for any t ∈ R, h(t) is expressed as

h(t) = g([t])h(t − [t]) = g([t])g(τ (t − [t])) e(t−[t]−τ(t−[t]))η0

= g([t] + τ(t − [t])) e(t−[t]−τ(t−[t]))η0 .

This proves lemma 4.8, and completes the proof of theorem 4.7.

Remark. The map j : (Crit(AH,µ,O)/π2(O))/G → Crit(AH,µ,λ)/Gλ defined in the proof of
the theorem is independent of the choice of τ : [0, 1] → [0, 1] and η0 ∈ gλ, while the map
(4.13) depends on them.

5. Concluding remarks

We comment on the variational method for relative periodic orbits of the Hamiltonian system
(2.4) in section 2. In particular, we explain why the boundary condition �γ(1)(X(1)) −
�γ(0)(X(0)) = 0 is necessary, in comparison with the usual variational method for paths in
the case where symplectic manifolds are cotangent bundles T ∗P .

Let us make a brief review of the variational method on the cotangent bundle T ∗P . See
also [Ar89]. Let θ be the Liouville one-form of T ∗P , and p0, p1 ∈ P be fixed points. On the
path space

P(p0, p1) = {� : [0, 1] → T ∗P |�(0) ∈ T ∗
p0

P, �(1) ∈ T ∗
p1

P },
the action functional is defined as

A(�) =
∫

[0,1]
�∗θ −

∫ 1

0
H(t, �(t)) dt.

For � ∈ P(p0, p1), we take a smooth map u : (−ε, ε) × [0, 1] → T ∗P such that

u(0, t) = �(t), u(s, 0) ∈ T ∗
p0

P and u(s, 1) ∈ T ∗
p1

P,

for any s ∈ (−ε, ε) and t ∈ [0, 1]. Then the variational vector field X ∈ �(�∗T (T ∗P)) along
� associated with u is determined by X = (∂su)|s=0. The first variational formula of A is then
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expressed as

(dA)�(X) = d

ds

∣∣∣∣
s=0

A(u(s, •))

= d

ds

∣∣∣∣
s=0

{∫ 1

0
θu(s,t)

(
∂u

∂t

)
dt −

∫ 1

0
θu(0,t)

(
∂u

∂t

)
dt

−
∫ s

0
θu(s ′,1)

(
∂u

∂s ′

)
ds ′ +

∫ s

0
θu(s ′,0)

(
∂u

∂s ′

)
ds ′

+
∫ s

0
θu(s ′,1)

(
∂u

∂s ′

)
ds ′ −

∫ s

0
θu(s ′,0)

(
∂u

∂s ′

)
ds ′ −

∫ 1

0
H(t, u(s, t)) dt

}

= d

ds

∣∣∣∣
s=0

{
−

∫
[0,s]×[0,1]

u∗ω −
∫ 1

0
H(t, u(s, t)) dt

+
∫ s

0
θu(s ′,1)

(
∂u

∂s ′

)
ds ′ −

∫ s

0
θu(s ′,0)

(
∂u

∂s ′

)
ds ′

}

=
∫ 1

0
ω�(t)(�̇ − XHt

,X) dt + θ�(1)(X(1)) − θ�(0)(X(0)).

Here we have used the Stokes theorem and ω = −dθ in the third equality. The boundary
condition u(s, t) ∈ T ∗

pt
P , t = 0, 1, implies that X(t) ∈ T�(t)(T

∗P), t = 0, 1, projects to
zero through the natural projection p∗ : T (T ∗P) → T P . Thus, from the definition of the
Liouville one-form θ , the quantities θ�(0)(X(0)) and θ�(1)(X(1)) vanish. Hence we obtain the
first variational formula

(dA)�(X) =
∫ 1

0
ω�(t)(�̇ − XHt

,X) dt,

which implies that critical points of A are subject to the Hamilton equation (2.4).
This calculation illustrates that though the Neumann condition θ�(0)(X(0))−θ�(1)(X(1)) =

0 for variational vectors is necessary in the cotangent bundle case, it is automatically satisfied,
owing to the Dirichlet condition �(i) ∈ T�(i)(T

∗P) for paths. In contrast with this, the
variational method dealt with in section 2 needs the condition �γ(0)(X(0))−�γ(1)(X(1)) = 0
in place of the condition �(i) ∈ T�(i)(T

∗P).
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20

http://dx.doi.org/10.1002/cpa.3160310405

	1. Introduction
	2. Symplectic reductions
	3. Variational method for the Marsden--Weinstein reduced system
	4. A
	5. Concluding remarks
	Acknowledgments
	References

